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Quantum chaos induced by scaled disorder
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Quantum chaos is obtained for a two-dimensional square lattice with a number of vacancies that scales with
the linear size of the clusterL. The appearance of quantum chaos is signaled by both level and wave function
statistics. Since states are extended, ballistic transport behavior is expected. In particular, we show that the
static conductance increases linearly withL. @S1063-651X~99!51104-5#

PACS number~s!: 05.45.Mt, 73.20.Dx, 03.65.Sq
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The statistical properties of measurable magnitudes
mesoscopic systems play an important role in the physic
mesoscopic phenomena@1,2#. Random matrix theory~RMT!
@3# has been successfully used to explain most of the exp
mentally known statistical results. The nonlinear supersy
metric s-model demonstrates the relevance of RMT
slightly disordered systems@4# and makes detailed predic
tions for some deviations@5#. However, generalization o
these results to chaoticballistic systems brings technica
complications, since average over disorder should be su
tuted by energy averaging of an action in which the Liouvi
operator replaces the diffusion operator. Alternatively, o
can study disordered systems that are nevertheless ba
from the point of view of their transport properties. A billiar
having a rough surface is the model of choice@6,7#. Other
possible models are distorted integrable billiards@8#. Follow-
ing this idea, Blanter, Mirlin, and Muzykantskii have pr
sented a detailed supersymmetric study of the statis
properties of rough circular billiards@9#. The level statistics
for the same problem was studied by Tripathi a
Khmelnitskii @10#. Motivated by the important difference
between systems having surface or bulk disorder, we h
further analyzed our original model@7# in order to unravel
the relevant parameters. It happens that the crucial chara
istic is not the physical placement of defects but their nu
ber, or more precisely, the scaling of the number of defe
as the size of the system grows. If the ratio between
number of defects and the billiard area, i.e., the defect d
sity, is constant, transport properties of the system scale f
the diffusive regime towards localization at large enou
size scales. At the same time, statistical properties scale
Wigner-Dyson behavior to Poisson statistics. On the ot
hand, if the number of defects is proportional to the num
of surface sites, i.e., defect density is inversely proportio
to linear size, transport properties are ballisticat all size
scales~see below!. Diffusive or localized transport behavio
is never reached. Statistical properties are well described
RMT at any system size. Moreover, the detailed distribut
of defects over the billiard does not matter. In this way,
arrive at the simplest model showing chaotic statistics
ballistic transport properties: a square cluster of sideL with a
number of vacancies of orderL placed at random positions
PRE 591063-651X/99/59~4!/3803~4!/$15.00
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The model of a quantum chaotic billiard presented in t
Rapid Communication is not only the more general one p
sible but also simpler than the original one because the s
stitution of defects by vacancies eliminates one unneces
technical complication. Nondiagonal or topological disord
occupies the place of diagonal disorder, eliminating one
relevant parameter from our model, the width of the dis
bution of diagonal energies. Only one energy scale rema
the one defined by the hopping integral. The other super
ous characteristic of our former billiard model was the pla
ment of all the defects on the surface of the system. We w
modeling roughness in a practical implementation but h
we show that bulk roughness in the form of forbidden plac
is also valid. In other words, what matters is just the re
tionship between forbidden and allowed sites but not th
relative spatial distribution.

Our model of a quantum billiard is described by means
a tight-binding Hamiltonian with a single atomic level p
lattice site,

Ĥ52(
i , j i

ĉi
†ĉ j i

, ~1!

where the operatorĉi destroys an electron on sitei, all the
hopping integrals are taken equal to21 and restricted to
nearest neighboring sites.j i gives just the labels of the ex
isting nearest neighbors of sitei. Periodic boundary condi-
tions are used for the study of spectral properties in orde
minimize finite size effects. Therefore, the difference b
tween our HamiltonianĤ and the one corresponding to a
ideal L3L cluster of the square lattice is the absence
hopping to and fromL sites chosen at random among theL2

sites defining the lattice. Spectral calculations have been
ried out on clusters of linear sizes up toL5100, whereas
conductance has been measured up toL5500.

The classical analog of our model shares some feat
with the pinball game. Certainly, a classicalL3L table in-
cluding aboutL/a circular scatterers of linear sizea centered
at random positions shows classical hard chaos. Notice
our model is characterized by two length scales: a mic
scopic one equal toa and a mesoscopic one given byL.
Scaling towards chaos requires a number of defects~scatter-
R3803 ©1999 The American Physical Society
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ers! of order L/a, i.e., just the ratio between length scale
This is a basic characteristic discussed in our previous m
on a general quantum-mechanical billiard@7#. Alternatively,
our model can be described as a billiard having internal s
faces limiting forbidden areas instead of just one surf
bounding the overall particle movement. Therefore, o
quantum model is not very far from standard classical
liards, such as Bunimovich stadium or Sinai once a supe
cial first sight is substituted by a somewhat closer analy
Random placement of vacancies is equivalent to a rand
shape of the internal surface, and this is the stronger jus
cation of calling our model the more general quantum b
liard model.

We follow standard quantum mechanical analysis of
model in order to show the existence of chaos@11#. We
obtain spectral and wave function statistics and show g
agreement with random matrix theory~RMT!. Eigenvalues
of one hundred samples of 50350 clusters and 25 samples
1003100 systems~250 000 levels! have been collected
Nearest-neighbor statistics has been computed for the s
between energies22.2 and20.5 for both sets of eigenval
ues. Remember that the spectrum lies between24 and 4 for
our model and is symmetric about 0 since the lattice is
partite. Results are shown in Fig. 1. Accordance with
Wigner-Dyson distribution corresponding to the Gauss
orthogonal ensemble~GOE! is excellent and independent o
the system size. Level repulsion, spectrum rigidity, etc.
implied by this result, which is the standard hallmark
quantum chaos. Nevertheless, other statistics, such as
variance of the number of states in an energy window
variable width is a deeper measure of the spectral proper
Figure 2 shows our results for the two sets of data toge
with GOE prediction. The energy range covered is exac
the same as previously, i.e., a major part of the whole sp
trum. We see that results are now slightly size dependent
differ qualitatively from RMT prediction.

Certainly, GOE statistics is followed for energy window
extending over a small number of eigenvalues, whereas
culated fluctuations are sensibly smaller and almost equa
1 for larger energy windows. This result was previous
found for our rough billiard model and theoretically e

FIG. 1. Nearest-neighbor statistics obtained for 25 sample
1003100 billiards compared to the Wigner-Dyson distributio
Level separation is given in units of the mean level separation.
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plained by Blanter, Mirlin, and Muzykantskii@9#. Both the
saturation value and the small oscillations about that va
allow a closer comparison with the ballistics-model predic-
tions. The period of the oscillations increases withL5AN,
N being the number of sites~i.e., proportional to the numbe
of levels up to the Fermi energy! as predicted by Blanter
Mirlin, and Muzykantskii and expected for a generic chao
billiard @12#. Nevertheless, the saturation value does
seem to depend onN as predicted by Eq.~15! of Ref. @9#.

Let us now turn to the statistical properties of wave fun
tions. Owing to the use of periodic boundary conditions,
nite size effects are minimized and both participation ra
and its fluctuation closely follow RMT predictions for matr
ces of comparable sizes. Squared wave function amplit
statistical distribution should follow the correspondin
Porter-Thomas law according to 0D supersymmetric non
ear s model results@4#. Figure 3 shows the wave functio
probability results obtained for all eigenstates between
one being number 6923 and the one being number 7692
1003100 billiard with a variable number of vacancie
These numbers do not have any physical meaning; it is ju
nonbiased form of selecting a relevant part of the whole
of eigenstates. We see that GOE prediction is closely
lowed over more than five decades when the number of
cancies is of order 100~the linear size of the system! but
clearly differs from it both for smaller and larger number
defects. Actually, the distribution is narrower for a smal
concentration of vacancies, whereas it shows a significa
enhanced tail when the number of defects is proportiona
the cluster area. These results have a straightforward ex
nation. Almost ordered systems are characterized by Bl
wave functions having spatial uniform probability. Th
would imply ad-like distribution. Nevertheless, many stat
are degenerate and this fact opens the computational p
bility of choosing random linear combinations of degener
states and having some amplitude fluctuations. This is
main purely numerical origin of the finite width of the prob
ability distribution of wave functions of a quasiordered sy
tem. On the other hand, relatively large disordered syste
show some tendency towards localization. Its numeri
manifestation is just the increased distribution tail~large am-

of FIG. 2. Number variance obtained for 100 samples of 50350
systems~thin line! and 25 samples of 1003100 billiards~thick line!
compared to the standard GOE result~broken line!.
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plitude values are allowed for localized states!. Similar re-
sults are obtained for smaller systems and/or different di
der realizations. Therefore, we are allowed to conclude
measurable deviations from Porter-Thomas statistics are
present in our two-dimensional billiard. Let us remind o
that Porter-Thomas statistics excludes the possibility o
fractal character of wave functions, a result that is in agr
ment with the conclusions attained in the study of our ori
nal model@7#. Going a step further, we can say that any we
localization manifestation is absent from our model at
studied length scales. The wave function statistics found
our billiard model should be contrasted with the one prov
for two-dimensional metals in the diffusion regime (l !L
,j) @13#. In the last case, pre-localized states give rise b
to extended tails in the distribution and inverse participat
numbers signaling a multifractal behavior of wave functio

Further analysis of wave function statistics comes fr
the study of finite size effects for the inverse participati
ratio. Results are summarized in Table I. We see that fl
tuations about spatial uniformity of eigenfunctions of o
model follow the same trend as GOE wave vectors obtai
for matrices of the same order. Namely, the relative fluct
tion dP2 /P2 decreases as 1/L, L being the square root of th
matrices order@14#. Therefore, although fluctuations are a b
larger for our model billiard, exotic dependences such as
lnL linear dependence proposed by Blanter, Mirlin, a
Muzykantskii in @9# can be disproved from our numeric
results. Notice that such kind of deviations from GOE sta
tics would also imply deviations from Porter-Thomas la
that we have not observed.

Let us now turn to transport properties of the model un
study. To this end, we open to opposite sides of the squ
cluster and connect them to two ideal leads of widthL
through hopping integrals equal to bulk values~that is,
21). Kubo formalism is used to calculate the conductan
of several samples of increasing sizes@15#. Results are
shown in Fig. 4 for two values of the Fermi energy, one ve

FIG. 3. Wave function statistics as a function of the number
vacancies. Squared amplitude is given relative to its mean va
Statistics are calculated for 1/13 of the total number of states
1003100 clusters with 5~thin stair!, 103 ~thick stair!, and 1992
~thicker stair! vacancies at random positions. Porter-Thomas dis
bution describing GOE wave function probability distribution
also shown~thick line!.
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close to the band center and the second roughly at3
4 of the

bandwidth. A nice linear behavior is obtained for both e
ergy values up to cluster sizes as large as 5003500. Con-
ductance fluctuations are also shown in the figure and
typically a small number of times the quantum conductan
unit (e2/h). The meaning of this scaling behavior is unam
biguous: our model shows ballistic transport behavior. T
linear increase is just reflecting the linear increase in
number of channels, whereas the typical linear decre
along the electrical field direction is absent~Ohm’s law pre-
dicts a constant value of the conductance in two-dimensio
diffusive systems. See an example of diffusive behavior
Fig. 4!.

Ballistic transport characteristics could have been infer
from the scaling behavior of the mean free path. Using

f
e.
a

i-

TABLE I. Finite size effects of the inverse participation ratioP2

and its fluctuation as obtained for a large number ('5000) of
eigenvectors corresponding to the Gaussian orthogonal ense
and our billiard model.

GOE

L P23L2 dP2

P2

dP2

P2
3L

16 2.9328 0.096835 1.549
32 2.9816 0.049701 1.590
64 2.9960 0.025584 1.637

Our model

L P23L2 dP2

P2

dP2

P2
3L

16 2.9281 0.118610 1.898
32 2.9923 0.070508 2.256
64 2.9996 0.038744 2.480

FIG. 4. Scaling of the billiard conductance ine2/h units as a
function of the linear size of the system. Fermi energy isE
50.1751 for the thick continuous line andE52.243 99 for the thick
long dashed line. The thin dotted line shows the typical cond
tance behavior of a diffusive system: Fermi energy isE50.1751
and the number of vacancies is 2%. Error bars measure the ty
dispersion of data.
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computational scheme reported in@16#, a mean free path o
the order of the cluster side (l;0.6L for E522.18 andL
randomly distributed vacancies! is obtained. Actually, when-
ever the number of vacancies iscL, c being a constant, the
mean free path is proportional toL/c. This is what can be
understood as a ballistic transport behavior, no ma
whether the mean free path is larger or smaller than the
tem linear size.

In summary, statistical and transport properties of a w
class of ballistic billiards have been numerically studied. S
tistical properties are well described by the Gaussian
thogonal ensemble except for the level number variance
saturates at;1 for a number of levels larger than the line
size of the system. Exotic behavior of wave functions, l
multifractality or presence of pre-localized states, is abs
from our study. Conductance increases linearly with the s
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ys
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tem size, an effect related to the increasing number of ch
nels and the absence of decay in the transport direction.
both to the simplicity of the model and their nice chao
behavior, we hope that it can be used as a firm basis fo
construction of a general theory of quantum chaos bey
random matrix theory. In particular, we plan a thorough n
merical study of wave function spatial correlations for whi
several theoretical predictions exist@5,17–19#.

We are thankful to E. Cuevas and A.D. Mirlin fo
suggesting to us the use of vacancies and adatoms a
surface of the billiard as a way to simulate roughness i
realistic fashion. This work was supported in part
the Spanish CICYT ~Grant No. PB96-0085! and the
European TMR Network-Fractals Contract No. FM
RXCT980183.
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